

01 Wastewater Reuse in Korea: Grey water

Grey Water Reuse by Application

Toilet Flushing - 153 (42.3%), Industrial Water – 87 (24.1%), Gardening - 14.4%, Cleaning - 7.5%

01 Wastewater Reuse in Korea

- Use of Treated Wastewater by Application
- ➢ On-site Reuse in WWTP: 56%
- > Increasing interest in using treated wastewater for industrial application

01 Wastewater Reuse in Korea

Region	No. of facilities	Current Status (ME, 2009)					
		Total floor area (m ²)	Treatment capacity (m ³ /day)	Grey water Use (m ³ /day)	Usage ratio (%)		
Seoul	57	7,917,449	18,721	8,161	43.6		
Pusan	22	2,211,099	7,066	4,907	69.4		
Daegu	5	144,221	5,450	5,535	98.5		
Incheon	5	241,547	23,400	6,932	29.6		
Kwangju	7	342,356	2,040	1,280	62.7		
Daejeon	5	12,796,321	226 1,617		14.0		
Ulsan	3	279,582	1,216 298		24.5		
Gyeonggi	58	7,874,258	77,087 41,922		54.4		
Ganwon	9	1,122,564	21,310 3,382		15.9		
Chungbuk	1	119,160	300	300	100.0		
Chungnam	13	815,374	215,034	119,344	55.5		
Jeonbuk	8	1,260,182	100,650 61,028		60.6		
Jeonnam	11	6,339,309	280,566 54,104		19.3		
Kyeongbuk	38	5,470,372	116,946 82,420		70.5		
Kyeongnam	9	940,670	14,895 1,605		10.8		
Jeju	5	179,643	655 324		49.5		
K-Water	15	7,292,007	1,314,467	181,424	13.8		
Total	271	55,346,114	2,201,505	573,107	26.0		

01 Wastewater Reuse in Korea

Use of Treated Wastewater

01 Diversity of Wastewater Reuse

02 MBR for N/P Removal

• Advanced Wastewater Treatment Using MBR

02 Advantage of MBR Systems

02 Various MBR Systems

	Pore size		Materials Polyethylene, polypropylene, polysulphone etc		
UF and MF submerged	0.02 to 0.5 µm				
UF and MF Side-stream	0.02 t	o 0.5 µm	5 μm Ceramics (MF), polye polypropylene, polysul		
Configurations		Specific fluxes		References	
Submerged HF		50 to 65 L/m ² .h.bar		Gunder & Krauth, 1998	
Flat plate		115 L/m ² .h.bar		Gunder & Krauth, 1998	
Tubular side-stream		40 to 60 L/m ² .h.bar		Le Clech et al., 1999	

Source: Ujang," Membrane Bioreactor Technology: Basic engineering design"

Efflu

02 Design Parameters

Parameters	Design values		
Loading rates (for >90% organic	1.2 to 3.2 kg COD/m3.d		
removal)	0.05 to 0.66 kg BOD/m ³ .d		
Loading rates for complete	0.05 to 0.66 kg BOD/m ³ .d		
nitrification	Sludge age 10 to 50 d		
Loading rate for complete nitrogen	4 kg NH ₄ -N/m ³ .d		
removal	5 kg NO ₃ -N/m ³ .d		
MLSS	10,000 to 20,000 mg/l		
Flux	5 to 300 L/m ² .h		
Specific flux	20 to 200 L/ m^2 h bar		
Design flux (Kubota, ϕ of 0.4 µm)	0.5 m ³ /m ² .d		
	(specific flux 125-175 L/ m ² h bar)		

03 Water Quality Guideline

Process Water Quality (WPCF 1989, in EPA Guidelines 2004)

		Pulp & Paper				Textiles		
Parameter	Mechanical Piping	Chemical Unbleached	Bleached	Chemical	Petroleum & Coal	Sizing Suspension	Scouring, Bleach & Dye	Cement
Cu	-	-	-		0.05	0.01	-	-
Fe	0.3	1.0	0.1	0.1	1.0	0.3	0.1	2.5
Mn	0.1	0.5	0.05	0.1	-	0.05	0.01	0.5
Ca	-	20	20	68	75	-	•	-
Mg	-	12	12	19	30	-		-
CI	1,000	200	200	500	300	-		250
HCO3	-	-	-	128	-	-		-
NO3	-		-	5	-	-		-
SO4	-	-	-	100	-	-		250
SiO2	-	50	50	50	-	-		35
Hardness	-	100	100	250	350	25	25	-
Alkalinity	-	-	-	125	-	-	-	400
TDS	-	-	-	1,000	1,000	100	100	600
TSS	-	10	10	5	10	5	5	500
Color	30	30	10	20	-	5	5	-
рН	6-10	6-10	6-10	6.2-8.3	6-9	-	-	6.5-8.5
CCE	-		-	-	-	-		-

03 Market for Wastewater Reuse Using RO

- Quaternary treatment: 20%
- RO/NF: 72% of Quaternary Treatment

03 Basic Process

Customized Recycled Water

Background: RO Operating Conditions								
	TDS (mg/L)	Typical Driving Pressure (psi)	Typical Recovery %	Typical Energy Use (kWh/1000 gal)				
Conventional Treatment	< 500	NA	95%	0.6 - 0.9				
Brackish Water RO	1,000 - 5,000	125 - 600	65 - 85	2.6 - 4.6				
Seawater RO	> 35,000	800 - 1200	30 - 50	8.6 - 11				

RO is energy intensive and costly to operate

- Brine disposal issues problematic
- Siting can also be difficult

03 Fouling of RO

03 Disadvantage of RO Systems

- Fouling Control
 Stringent pretreatment required
- Removal of Trace Organics
 - Non-charged small organics pass through RO
- High Energy Consumption and Low Recovery
 Energy intensive
 - Low recovery (~75%) → Concentrate management issues

03 Importance of RO O&M

• Effect of Cleaning Period

- Monitoring normalized permeate flow and pressure drop
- Changes in 10%-15%
- Frequent cleaning damage the membrane
- Without proper cleaning, RO membrane will be permanently fouled.

International Workshop on Reclaimed Water Use in Urban Area -From Water Quality to Water Safety Management for Water Reuseheld on January 10, 2012 at Kitakyushu International Conference Center

Global Challenge for Reclaimed Wastewater Use -From Water Quality to Water Safety Management for Water Reuse-

Panel Discussion

• Coordinator: Prof. H. TANAKA (Kyoto

- University)
- Panelist: Prof. H.Y.HU (Tsinghua University)
- Prof. S.H. LEE (KookMin University)
- Mr. E. TAKASHIMA (Director, MLIT)
- Mr. F. TANAKA (Director of International Water Business, City of Kitakyushu)
- Mr. K. SHINODA (Director of Sewerage, City of Fukuoka)
- Dr. O. FUJIKI(Co-chairperson, Japanese Mirror Committee of ISO/TC224)

• Discussion Points 1

- アジアでの水資源管理、水環境管理に再生水の利用は大きな役割を担うと期待されるが、どのような技術や研究を推進すべきか?
- What technologies and research should be developed for promotion of water reclamation and reuse practices in Asia where water reclamation and reuse is really expected important roles in waster resources management and water environmental management?

• Discussion Points 2

- 再生水の利用を推進するために、質的改善を図 かり、コスト(エネルギー)を下げることも必要と 考えられるが、どのような社会条件や制度の導 入が有効か?
- What condition and/or institutions should be introduced for co-solution of water quality improvement and cost(energy)-saving when water reclamation and reuse is promoted extensively?

- Discussion point3
- 日本、中国、韓国の3カ国での下水道、特に再 生水利用での技術協力を推進することは、どの ような分野で有効で重要と考えるか?
- What technical collaborations among three states, China, Korea and Japan are effective and/or important in the field of wastewater, particularly water reclamation and reuse?

Reclaimed Wastewater Use International Standardization Activities

and

Current State in Urban Area in Japan

Eijiro Takashima

Director for Watershed Management Sewerage and Wastewater Management Department Water and Disaster Management Bureau Ministry of Land, Infrastructure, Transport and Tourism

🎱 国土交通省

Significance of Creating International Standards Related to 2 国土交通省 Reclaimed Wastewater Use

Water shortage is a crucial issue in many Asian cities where rapid economic growth and the concentration of population and industries are in progress.

Many of those cities are accelerating sewerage development for the purpose of the protection of public health and water pollution control and now, treated wastewater is getting highlighted as an alternative water resource.

To resolve water problems that occur not only in the Asian region but globally, it is important to promote the creation of international standards for recycled wastewater technology to enable for the stable usage of water, <u>under the initiative of the three countries of China, Korea and Japan.</u>

Linkage among China ,Korea and Japan, through the Northeast Asia Standards Cooperation Forum

🔮 国土交通省

3

5

○ Northeast Asia Standards Cooperation Forum

Promotes cooperation in standardization activities among the three countries of China, Korea, and Japan, with the objective of contributing to continued standardization activities in the Asian region, by making shared approaches toward the development of an infrastructure for global standardization, development of standard specifications, joint proposals, and popularization of standard specifications.

⇒ Based on the movements, etc. of ISO/PC 253, it was agreed upon in the 9th Northeast Asia Standards Cooperation Forum held in July 2010 in Japan (Toyama City) to promote global standardization of standards related to usage of treated wastewater in cities based on linkage with China and Korea.

ISO/PC 253 Treated Wastewater Reuse for Irrigation

 Inaugurated as a PC (Project Committee^{*}) in 2010 based on a proposal by Israel

1. International Standardization

Activities for Reclaimed Wastewater Use

- Standards/guidelines "Utilization of Treated Water for Irrigation" is being formulated
- * Temporary committee established for creating certain standards. Will be disbanded after creation of standards.

Scope of Application of "Utilization of Treated Water for Irrigation"

- International standards related to usage of treated wastewater for irrigation that take into consideration health, the environment, agriculture, etc.
- Design of the sewage treatment plant and process are outside of the scope of application
- Objective is to prescribe "performance that is necessary for usage of treated wastewater for irrigation"
- Major items in draft international standards (as of the current stage):
- Water quality standards for treated wastewater for various intended uses
- Procedures that should be taken to prevent or minimize the effects of the use of treated wastewater on people's health and the environment, as well on surface stream water, groundwater, air quality, soil quality, and crops

Northeast Asia Cooperation Forum Concerning Reclaimed Wastewater Use in Urban Area

- O Based on the agreement made in the Northeast Asia Standards Cooperation Forum, "the meeting of Reclaimed Wastewater Use in Urban Area" (RWUUA) was launched for the purpose of promoting cooperation among the three countries of China, Korea and Japan in standardization activities
- O Participants included the Director for Watershed Management from the Ministry of Land, Infrastructure, Transport and Tourism representing Japan; the China Ultraviolet Disinfection Association representing China; and Korea Water and Wastewater Works Association representing Korea.

O The first meeting was held in March 2011 (Tokyo) and the second meeting was held in June (Busan). Information was exchanged regarding water quality standards and the state of reclaimed wastewater use in each country, response to ISO/PC 253, and future approaches toward standard/zation

January 11, 2012 3rd meeting (Kitakyushu City)

2nd meeting of Reclaimed Wastewater Use in Urban Area, Northeast Asia Standards Cooperation Forum (June 2011, Pusan)

6

🔮 国土交通省

2

Reverse Osmosis (RO) Membrane

Characteristics

· Much energy is needed to pass water through a permeation membrane (pressure of about 5 MPa) ⇒ lowering the salinity saves energy (corroborative research by the Water Plaza)

· Bacteria, salt, dioxins, and other substances dissolved in water can be filtered \Rightarrow potable water quality

The Water Plaza uses world-leading 16-inch modules

P14

P16

and life

Туре

BOD

SS TN

TP

Inflow water quality

(sewage)

150

164

27

3.1

Range of Initiatives Reconstructing the management building and creating the Water Business Center (tentative name) Educating water experts Spreading information around the world Upgrading and expanding the test-bed Expanding the research Establishing the Kitakyushu

Hiakari Sewage

Treatment Plant

2.3

2

14

0.96

Average in 2009

MBR処理素

Treated wate

(MBR)

Unit: mg/L Treated water quality

MBR

0.6

ND

3.9

0.8 Sept. 2011

生産水

Product water

P15

P17

■ ■ マネジメントシステム規格とは何か? What is management system standards?

management system

system to establish policy and objectives and to achieve those objectives Management system standards

Type A: management system requirements standard

standard that is intended to provide the market place with relevant specifications for the management system of an organization to demonstrate its capability to meet internal and external requirements

マネジメントシステム要求事項規格

組織が内部及び外部の要求事項を満たす能力を有することを実証するための組織 のマネジメントシステムに関する規定要求事項を市場に提示することを意図した 規格 ⇒ 第三者認証の目的で使うことが可能

Type B: management system guidelines standard

standard that is intended to assist an organization to implement and/or enhance its management system by providing additional guidance to the elements of a management system requirements standard, or stand-alone guidance with no equivalence to a management system requirements standard Type C: management system related standard

standard that is intended to provide further information on specific parts of the management system or guidance on

related supporting techniques, in addition to management system standards

WTO/TBT協定のポイント

第2条

- ~ 中央政府禮閱(Central Government Bodies)の強制規格(Technical Regulation) に関連する条項では、2.4において、国際規格を基礎として強制規格を実施するこ とを義務づけ。

With respect to the Central Government Bodies, Members shall use relevant international standards as a basis for their Technical Regulations.

第4条

任意規格(Standards)の制定に関する条項では、4.1において、加盟国に対し、中 央標準化機関(Central Standards Bodies)の規格制定等に関する適正実施規準 (Code of Good Practice)の受入れ確保を義務づけ。

Members shall ensure that their Central Government Standardizing Bodies accept and comply with the Code of Good Practice (referred to as "CGP") for the Preparation, Adoption and Application of Standards

附属書3

任意規格の制定等に関する「適正実施規準(CGP)」では、標準化機関が規格 制定の際に満たすべき手続等を規定 貿易の障害となるような規格制定を回避 国際規格を基礎とした任意規格の制定 国際規格制定への積極的参画

話題提供 Topics

- 1. 何故北東アジア標準協力フォーラムで協力するのか?
- 2. マネジメントシステム規格の潮流 世界市場で成長するための鍵
- 3. 何故マネジメントシステム規格に関与するのか?
- マネジメントシステム規格の可能性 「水質から水安全マネジメント 4. へ」の再生水利用マネジメントの範囲拡大
- 1. Why should we collaborate on the platform of Northeast Asia Standards Cooperation Forum?
- 2. Growing tide of management system standards the key to thrive on the world market
- 3. Why should we commit ourselves to the management system standards?
- 4. Potential of management system standards to expand the scope of the management of the reclaimed wastewater use "from water quality to water safety management"

11

話題提供 Topics 1. 何故北東アジア標準協力フォーラムで協力するのか? 2. マネジメントシステム規格の潮流 - 世界市場で成長するための鍵 3. 何故マネジメントシステム規格に関与するのか? 4. マネジメントシステム規格の可能性 - 「水質から水安全マネジメント へ」の再生水利用マネジメントの範囲拡大

- 1. Why should we collaborate on the platform of Northeast Asia Standards Cooperation Forum?
- 2. Growing tide of management system standards the key to thrive on the world market
- 3. Why should we commit ourselves to the management system standards?
- 4. Potential of management system standards to expand the scope of the management of the reclaimed wastewater use "from water" quality to water safety management"

8

第六条 技術仕様

政府調達に関する協定

1 機関の定める技術仕様であって、品質、性能、安全、寸法等の関連される産品若しくはサービスの特性、配号、専門用語、包装、証果及びラペル等又は生産工程及び生産方法について これでしたのまず、「前面」を設いた本でのシージンをつきたらすことを目的として又は、本本でのシージンをつきたらすことを目的として又はこれをもたらす効果を有するものとして、立来され、制定され又は適用されてはならない。

2 4 機関は、<u>技術仕様については、適当な場合には</u>、 (a) デザイン又は記述的に示された特性よりも性能に着目して、また、 (b) 国際規格が存在するときは当該国際規格、国際規格が存在しないときは国内強制規格、 認められた国内任意規格又は産業規準に基づいて定める。

Agreement on Government Pro

Article VI: Technical Specifications

1. Technical specifications laying down the characteristics of the products or services to be procured, such as quality, performance, safety and dimensions, symbols, terminology, packaging, marking and labeling, or the processes and methods for their production and requirements relating to conformity assessment procedures prescribed by procuring entities, shall not be prepared, adopted or applied with a view to, or with the effect of, creating unnecessary obstacles to international trade. 2. Technical specifications prescribed by procuring entities shall, where appropriate:

- (a) be in terms of performance rather than design or descriptive characteristics; and
- (b) be based on international standards, where such exist; otherwise, on national technical regulations, recognized

水不足、健康リスク、経済性等を総合的に勘案した排水・し尿の有効利用 WHO GUIDELINES FOR THE SAFE USE OF WASTEWATER,

EXCRETA AND GREYWATER Volume 2 Wastewater use in agriculture

nt-a-Cvcle

P22

ata Ce

Kyoto University HSE Technical Report Series 194

International Workshop on Urban Water Reuse

都市における再生水利用に関する国際ワークショップ

Date: January 10th, 2012

Location: International Conference Room , Kitakyushu International Conference Center Hosted by: Ministry of Land, Infrastructure, Transport and Tourism (MLIT)

City of Kitakyushu

Kyoto University Global COE Program - Global Center for Education and Research on Human Security Engineering for Asian Megacities

Kyoto University CREST Program - Development and Evaluation of Water Reuse Technologies for the Establishment of 21st century type Water Circulation System

Office Address: C1-3-182, Katsura Campus, Kyoto University, Nishikyo-ku, Kyoto, 615-8540, Japan

Kyoto University Global COE Program Global Center for Education and Research on Human Security Engineering for Asian Megacities

> 京都大学グローバル COE プログラム アジア・メガシティの人間安全保障工学拠点